Helpful math¶
Properties of exponentials¶
\(a^{-n} = \frac{1}{a^{n}}\)
>>> a,n = 2,3
>>> print(a**(-n),1.0/a**n)
0.125 0.125
\(a^{1/n} = \sqrt[n]{a}\)
>>> a,n = 2,3
>>> print(a**(1/n), np.cbrt(a))
1.2599210498948732 1.25992104989
\(a^{m/n} = \sqrt[n]{a^{m}}\)
>>> a,m,n = 2,4,3
>>> print(a**(m/n), np.cbrt(a**m))
2.5198420997897464 2.51984209979
\(a^{mn} = (a^{m})^{n}\)
>>> a,m,n = 2,4,3
>>> print(a**(m*n), (a**m)**n)
4096 4096
\(\log(x^{y}) = y \log(x)\)
>>> x,y = 4,2
>>> print(np.log(x**y),y * np.log(x))
2.77258872224 2.77258872224
\(\log_{a} a^{n} = n\)
>>> x
>>> x
>>> x
\(\log(bc) = \log(b) + \log(c)\)
>>> x
>>> x
>>> x
\(\log(\frac{1}{b}) = -log(b)\)
>>> x
>>> x
>>> x
Also recall that \(n^{0} = 1, \ 1! = 1, \ 0! = 1\)