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Dimension Reduction

Remove multicolinearity

Deal with the curse of dimensionality

Remove redundant features

Interpretation & visualization

Make computations of algorithms easier

Identify structure for supervised learning
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Standardization

Always start by standardizing the dataset

1 Center the data for each feature at the mean (so we have mean 0)

2 Divide by the standard deviation (so we have std 1)

sklearn.preprocessing

http://scikit-learn.org/stable/modules/preprocessing.html

The function scale provides a quick and easy way to perform this
operation on a single array-like dataset

the class StandardScaler provides further functionality as a
Transformer (use fit)

from sklearn import preprocessing

X = preprocessing.scale(X)

scaler = preprocessing.StandardScaler().fit(X)

X = scaler.transform(X)
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Scaling with a train/test split

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

## create some data

X,y = make_classification(n_samples=50, n_features=5)

## make a train test split

X_train, X_test, y_train, y_test = train_test_split(X, y)

## scale using sklearn

scaler = StandardScaler().fit(X_train)

X_train_1 = scaler.transform(X_train)

X_test_1 = scaler.transform(X_test)

## scale without sklearn

X_train_2 = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0)

X_test_2 = (X_test - X_train.mean(axis=0)) / X_train.std(axis=0)

https://stats.stackexchange.com/questions/77350/perform-feature-normalization-before-or-within-model-validation
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1

N
XTX

import numpy as np

from sklearn import preprocessing

x1 = np.array([[10,10,40,60,70,100,100]]).T

x2 = np.array([[3,4,7,6,9,7,8]]).T

X = np.hstack([x1,x2]).astype(float)

n,d = X.shape

X = preprocessing.scale(X)

print(X.mean(axis=0),X.std(axis=0))

print(1.0/(n) * np.dot(X.T,X))

print(np.cov(X.T,bias=True))

[[ 1. 0.80138769]

[ 0.80138769 1. ]]

1 This tells us that the covariance between feature 1 and feature 2 is 0.801.

2 This intuitively makes sense, since we can tell the two features are correlated

3 The variance of each feature is 1 and this makes sense because we standardized
our data first

4 you can set bias to 1 if you want

AJR time



Intro PCA SVD Literatur

an example

x1 = np.array([[0,1,2,3]]).T

x2 = np.array([[3,2,1,0]]).T

X = np.hstack([x1,x2]).astype(float)

X = preprocessing.scale(X)

print(np.cov(X.T))

What should the signs on the covariance matrix look like?
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an example

x1 = np.array([[0,1,2,3]]).T

x2 = np.array([[3,2,1,0]]).T

X = np.hstack([x1,x2]).astype(float)

X = preprocessing.scale(X)

print(np.cov(X.T,bias=1))

What should the signs on the covariance matrix look like?

[[ 1. -1.]

[-1. 1.]]

C0,1 shows the correlation between x0 and x1, which is negative
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Why do PCA in the first place?

High dimensional data causes many problems. Here are a few:

1 The Curse of Dimensionality

2 It’s hard to visualize anything with more than 3 dimensions.

3 Points are “far away” in high dimensions, and it’s easy to overfit small datasets.

4 Often (especially with image/video data) the most relevant features are not
explicitly present in the high dimensional (raw) data.

5 Remove Correlation (e.g. neighboring pixels in an image)
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PCA

How is it that correlation and covariance were related again?
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PCA

How is it that correlation and covariance were related again?

Cov [X ,Y ] = E [(x − E [X ])(y − E [Y ])] (1)

=

∑
or

∫
x,y∈SX ,SY

 (x − E [X ])(y − E [Y ])P(X = x ,Y = y) [dxdy ] (2)

Corr [X ,Y ] =
E [(x − E [X ])(y − E [Y ])]

σXσY
=

Cov [X ,Y ]

σXσY
(3)

In say linear regression what might an ideal covariance matrix look like?
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PCA

The ideal convariance matrix would look something like this
10 0 0 0
0 11 0 0
0 0 5 0
0 0 0 8


Principal Component Analysis

Usually we will get a covariance matrix with a lot of large values. Our ideal
would be one where all the non-diagonal values are 0. This means that there is
no relationship between the features. We can do a transformation of this data
to make this happen
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Behind the PCA

1 Create the design matrix

2 Standardize your matrix

3 Compute 1
N
XTX

4 The principal components are the eigenvectors of the covariance matrix

The size of each eigenvector’s eigenvalue denotes the amount of variance
captured by that eigenvector

Ordering the eigenvectors by decreasing corresponding eigenvalues, you get an
uncorrelated and orthogonal basis capturing the directions of most-to-least
variance in your data
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Singular Value Decomposition (SVD)

So we can use a technique called SVD for more effiecient computation

It is not always easy to directly compute eigenvalues and eigenvectors

SVD is also useful for discovering hidden topics or latent features

Every matrix has a unique decomposition in the following form

M = UΣV T

where

U is column orthogonal: UTU = I

V is column orthogonal: V TV = I

Σ is a diagonal matrix of positive values, where the diagonal is ordered in
decreasing order

We can reduce the dimensions by sending the smaller of the diagonals to 0.
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SVD and PCA

In PCA we had
MTMV = VΛ

where Λ is the diagonal matrix of eigenvalues
According to SVD we have

M = UΣV T

MTM = (UΣV T )TUΣV T

= VΣTUTUΣV T

= VΣ2V T

This is the same equation as with PCA we just have Λ = Σ2
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Movie ratings
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import numpy as np

from numpy.linalg import svd

M = np.array([[1, 1, 1, 0, 0],

[3, 3, 3, 0, 0],

[4, 4, 4, 0, 0],

[5, 5, 5, 0, 0],

[0, 2, 0, 4, 4],

[0, 0, 0, 5, 5],

[0, 1, 0, 2, 2]])

u, e, v = svd(M)

print M

print "="

print(np.around(u, 2))

print(np.around(e, 2))

print(np.around(v, 2))
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With M = UΣVT , U is the user-to-topic matrix and V is the movie-to-topic matrix.

Science Fiction

First singular value (12.4)

First column of the U matrix (note: the first four users have large values)

First row of the V matrix (note: the first three movies have large values)

Romance

Second singular value (9.5)

Second column of the U matrix (note: last three users have large values)

Second row of the V matrix (note: the last two movies have large values)
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The third singular value is relatively small, so we can exclude it
with little loss of data. Let’s try doing that and reconstruct our
matrix
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